Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography.
نویسندگان
چکیده
Y chromosome haplotypes are particularly useful in deciphering human evolutionary history because they accentuate the effects of drift, migration, and range expansion. Significant acceleration of Y biallelic marker discovery and subsequent typing involving heteroduplex detection has been achieved by implementing an innovative and cost-efficient method called denaturing high-performance liquid chromatography (DHPLC). The power of the method resides in its sensitivity and ability to rapidly compare amplified sequences in an automated manner. We have determined the allelic states of 22 Y polymorphisms; 19 of which are unreported, in 718 diverse extant chromosomes; established haplotype frequencies; and deduced a phylogeny. All major geographic regions, including Eurasia, are characterized by mutations reflecting episodes of genetic drift and expansion. Most biallelic markers are localized regionally. However, some show wider dispersal and designate older, core haplotypes. One transversion defines a major haplogroup that distinguishes a previously unknown deep, apparently non-African branch. It provides evidence of an ancient bottleneck event. It is now possible to anticipate the inevitable detailed reconstruction of human Y chromosome genealogy based on several tens to even hundreds of these important polymorphisms.
منابع مشابه
DHPLC Applications: Finding DNA Variation on the Y Chromosome
Denaturing High-Performance Liquid Chromatography (DHPLC) is a recently developed technique forthe detection of single nucleotide polymorphisms (SNPs) and mutations. It involves the comparisonbetween two or more DNAs as a mixture of denatured and reannealed PCR products. The methodologyis based on the principle of reversed phase liquid chromatography and uses a unique DNA sepa...
متن کاملThe Comparison of the Effectiveness of a Modified Conformation Sensitive Gel Electrophoresis with Denaturing High Performance Liquid Chromatography
Background: Several methods have been developed for detection of sequence variation in genes and each has its advantages and disadvantages. A disadvantage of them is that the simpler, cost-effective methods are commonly perceived as being less sensitive in their detection of sequence variation, whereas those with proven sensitivity have a requirement for complex or expensive laboratory equipmen...
متن کاملDetection of CYP2C18 m1, and m2 Alleles within an Iranian Population (Mazandaran) Using Denaturing High-Performance Liquid Chromatography (DHPLC)
Background: Genetic polymorphisms of cytochrome p450 in humans are the main cause of differences in the metabolism. The allele and genotype frequencies of CYP2C19 and CYP2C9 have been studied in some Iranian populations. The aim of present study was to examine the frequencies of CYP2C18m1, and CYP2C18m2, alleles in the Mazandarani ethnic group among Iranian Population. Materials and Methods: I...
متن کاملDenaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations.
Denaturing high performance liquid chromatography (DHPLC) has been described recently as a method for screening DNA samples for single nucleotide polymorphisms and inherited mutations. Thirty-eight DNAs, 22 of which were heterozygous for previously characterized rearranged transforming gene (RET) or cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations or polymorphisms, were...
متن کاملA Comparison Between Denaturing Gradient Gel Electrophoresis and Denaturing High Performance Liquid Chromatography in Detecting Mutations in Genes Associated with Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the Identification of 9 New Mutations Previously Unidentified by DGGE
Denaturing high performance liquid chromatography is a relatively new method by which heteroduplex structures formed during the PCR amplification of heterozygote samples can be rapidly identified. The use of this technology for mutation detection in hereditary non-polyposis colorectal cancer (HNPCC) has the potential to appreciably shorten the time it takes to analyze genes associated with this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 7 10 شماره
صفحات -
تاریخ انتشار 1997